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~-Eenchel's Dyality Theorem in
Generalized Geometric Programming

by

Elmor L. Peterson*

Abstract. Fenchel's duality theorem is extended to generalized geometric
programming with explicit constraints -- an extension that also generalizes

and strengthens Slater's version of the Kuhn-Tucker theorem.

Key words: Fenchel's duality theorem, generalized geometric programming,
convex programming, ordinary programming, Slater's constraint qualificationm,
Ruhn-Tucker theorem.
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1. Introduction. Although many implications of this extension have

already been discussed in the author's recent survey paper [l], a proof

B A I g e e
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of it is given here for the first time.

This proof utilizes the unconstrained version that has already been

established by independent and somewhat different arguments in [2] and

(3]. 1In doing so, it exploits the main result from [4] and also requires

some of the convexity theory in [3]--especially the theory having to do

e s s o B o S T

with the "relative interior" (ri S) of an arbitrary convex set S SEy

(N-dimensional Euclidean space).

2. The unconstrained case. We begin with the following notation and

s g SR e b SR e e

hypotheses:

t E % is a nonempty closed convex cone in En’
§ % g 1s a (proper) closed convex function with a nonempty
| (effective) domain ccEn.

i
9 ] j Now, given X and g, consider the resulting ''geometric programming
! }; problem" 7.
a8
)iﬁ PROBLEM 7. Using the feasible solution set
.l €
o
NL{' G
; " v calculate both the problem infimum

s
3 ¢= inf g (x)
ol ; x€s
- " ‘4

and the optimal solution set

A
H={xed |g) =g).
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Geometric duality is defined in terms of both the "dual cone"
A ;
y={ye€ E, | 0s{x,y) for each x €%}
and the '"conjugate transform function'" h whose (effective) domain

A
p={y€E, | sup [(y,x)-gx)] is finite}
x€C

and whose func‘tional value

h@) = sup [(y»x) -g ()]
x€e

In particular, given the geometric programming problem &Z, consider the

resulting "geometric dual problem" 5.

PROBLEM 5. Using the feasible solution set
ryns,
calculate both the problem infimum

A
¢ = inf h(y)
yveJ

and the optimal solution set
A
Te={y€r | h(y) =4}.

Fenchel's duality theorem in the context of dual problems & and 3

is onc of the most important theorems in geometric programming. It can

be stated in the following way.
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Theorem 1. If problem & has both a feasible solution ;° € (zi%) N(ri B)
and a finite infimum ¥, then

(I) problem & has both a nonempty feasible solution set o’ and a finite

infimum @, and

O-CD+'1

GRETVARE dp"f

(I1) problem 7 has a nonempty optimal solution set /.

|
! * This theorem is established as Theorem 31.4 on page 335 of [3].

The implications of Theorem 1 are given on page 26 of [l]. An

8 important extension of it is established in the next section.

3. The constrained case. To incorporate explicit comstraints into

generalized geometric programming, we introduce the following notation

g
‘{;

and hypotheses:

I and J are two nonintersecting (possibly empty) positive-integer

%

index sets with finite cardinality o(I) and o(J) respectively;

e

T r_———

xk and yk are independent vector variables in Enk for kefOjUI U,

and xI and yI denote the respective Cartesian products of the vector

'.‘S}_':';'f“{ ;}s},zum .\K{}_‘-e‘;.'-' ol v g :\‘fu.': AR e i e

52 SH

variables x". i€1, and yi, i€1I while xJ and yJ denote the respective

Cartesian products of the vector variables xj, jeJ, and yj, j€J; so
a
I'xJ) b

-~

D Sl ST P SIS RS
4
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A
the Cartesian products (xo,x x and (yo.yl.y") =y are independent

vector variables in En’ where

A
n'no+2 °1+E ay;
I J

a and )\ are independent vector variables with respective components Qy

and )‘1 for 1€1, and P and K are independent vector variables with
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respective components 8 j and ¥ j for j€J;

X and Y are nonempty closed convex dual cones in En’ and g, and hk
are (proper) closed convex conjugate functions with respective

(effective) domains C, SE. and D, €E for ke{ojuruyg.
uSty, wmd v cx,

Now, let

A
Z-{(xo,xl,a,xJ,K) GEn | (xo,x;,xJ) €X; a=0; K€ Eo(J)J’
where n+o(I) +o0(J) =n. 1In addition, let

4
et ol e (Pee; dec, aen, an

gi(xi)+ai$0, 1e¥ (xj,rcj)ec}’, j€3),

and let

g(xo,xl,a,xJ.K) =A'go «°) +2 g;'(xj,'fj).
. J

where the (closed convex) function g; has a domain

A
€ ={Gd k) | eteher k, =0 and  sup e T ¥ 30 ant dex ¢

j]
]

and functional values

fup (xj,d") 1f K, =0 and sup (xJ,dJ)<-h
ddep ] 3

dJ €D
+(xji()e i J -
o Sl e

ngJ(x'J/xJ) L£K,>0 and x-’exjcj.

The resulting problem @ can clearly be stated in the following way.

e —




PROBLEM A. (Consider the objective functiom G whose domain

A
C={(x,%) ]xkECk, k€{0}UI, and (xj,xj)ec‘;’, j€3)

and whose functional value

4 0 +
G(x,K) =g . (x ) +2 g (xj,K ).
fo 3 e )

Using the feasible solution set

A
$={(x,K) €C |x€X, and gi(x")so, 1 €1},

calculate both the problem infimum

A
o= inf G(x,K)
(x,K) €8

and the optimal solution set

s* 8 {(x,%) €5 | G(x,K) =0).

Now, section 3 of [4] shows that

Lt g § & B o
¥={G .y Ly BEE | &,y ¥y )EY; B =0, xezom}.

Section 3 of [4] also shows that

PP Sl R 0 s + s
B={G7y My B €E, |y €Dy (y7,A) €D, L€I; y €D,

B GE].’ and hj(yj)"'ﬂ SO, jeJ}s

J J

and that

20yt y” 8 =hy &) +ZHEA,
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where the (closed convex) function h+ has a domain

D '{(y »A;) | efther A =0 and

SUP (yt,cty <4, or A;>0 and y' €A,D
Cc

GC

and functional values

sup (y ,ci) if A =0 and sup (y c )<+n
c’-ec c"GC
4+, 1 E
by otiap)
i
WL ”‘1) 1f A;>0 and y €D, .

The resulting problem 2 can clearly be stated in the following way.

PROBLEM B. Consider the objective function H whose domain

A A
D={G.N) |y€n, ke(0JuJ, and G €}, 1e1)
and whose functional value
A
H(y, ) =hy ) +Z b ‘,xi)
1
Usi e feasible solution set
) [
T={(y,\) €D |y€Y, and hj(y ) <0, JE€J},

calculate both the problem infimum

4
*- inf H(Y.A)
,A\)ET

and the optimal solution set

™2, ET | HG,A) =),

%

el

R,




It is worth noting that dual problems A and B provide the only com-
pletely symmetric duality that is presently known for general (closed)
convex programming with explicit constraints. Moreover, [1] and some of
the references cited therein show that all other duality in convex pro-
gramming can be viewed as a special case. For the fundamental relations
between geometric duality and ordinary Lagrangian duality see [5].

Fenchel's duality theorem in the context of dual problems A and B
is one of the most important theorems, as well as one of the deepest
theorems, in geometric programming. It can be stated in the following

way .

Theorem 2. If
(1) problem B has a feasible solution (y',A') such that

hj(y'5)<o 1%,

(i1) problem B has a finite infimum ¥,

(111) there exists a vector (y+,k+) such that

y+€ (ri Y):
y""‘e(ri D) ke{o}uy,
™A € et D)) 1€1,

then

(I) problem A has both a nonempty feasible solution set S and a
finite infimum ¢, and

s :‘rﬂ




(II) problem A has a nonempty optimal solution set S*.

Proof. We obviously need only show that the Fenchel hypothesis in Theorem
1 (i.e. the hypothesis that there exists a vector }° € (ri%) N (riB)) is
equivalent to hypotheses (i) and (iii) in Theorem 2.

Toward that end, we first use the formulas for % and £ to derive
comparable formulas for (ri%) and (rif) -- two derivations that make

crucial use of the following basic facts:
(A) (riU)=U when U is a vector space,

n 1
(B) (riV)=x (ri Vk) when V= x Vk and the sets Vk are convex,
1 1

g P S et R
i L

and

(ri W) = (int W), the "interior" of W, when W is a convex set with the

5
&

]
'3.4,

same ""dimension' as the space in which it is embedded.

Fact (A) is established on page 44 of [3]; fact (B) can be obtained in-
ductively from the formula at the top of page 49 of [3]; and fact (C)
1s explained on page 44 of [3].

Now, the formula for % along with facts (A) and (B) implies that

4 T SR 0 1.3 : idel
1P = (G ,y Ay BYEE, | 7,y 7)) € (11 ¥); NEE 1y 8=0]).

Moreover, the formula for / along with facts (A) and (B) implies that

[ 300 PP | 0 . i
(riB) = {(y .,y A,y B) €E, [y € (riDy); A >0 and y € (rid),

RSt J
1€1; v G(ribj), 53681. and hj(y ) +8, <0, €3},
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by virtue of both the equation

(1D} = [rh0) [ A >0 and y' €), (i D))

and the equation

(rt((y’,aj) | v} €, and hj(yj)."'ﬂjso}) - ]

4 J J ; .
(0”8,) [By€E), y° € (xiD)), and h,(G~) +8,<0]. {

To derive the latter equation, simply use Theorem 6.8 on page 49 of [3]

PR

along with fact (C). To derive the former equation, first consider the

+ :
point-to-set mapping Y::Ai where ! 4

A
] =ly' | ohap o))

i =

and

S A BN Y

+4 + ,
Ai'[ki 'Yi“i] is not empty]}. !
Now, Corollary 6.8.1 on page 50 of [3] implies that

10 = (A [N € (eth]) and y'e iy, D)

el S A W i P

+

Moreover, the definition of D, clearly shows that AI' {)‘1 20}, which means ; :

of course that

+
(et ) = [)\1>0}.

o

v

Furthermore, for )\1>0 the definition of DI clearly shows that

+ v
: Yi[).i] AyDy s which means that

+ +
(ri ¥ [A,]) = (e1 D)) for A, € (x1 ),




e

‘

by virtue of Corollary 6.6.1 on page 48 of [3]. Consequently, our

derivation of the preceding formula for (rip5) is complete.

In particular then, the Fenchel hypothesis in Theorem 1 simply

agserts that

there exists a vector (yo,yI,)\,yJ,O) =°

such that (yo,yI,yJ) €E(riY); Yo € (ri Do);

k1>0 and y"EAi(riDi), 1€1; yjé (ri D

j)

and hj(yj)<0, 18

To complete our proof, we now show that this hypothesis is in fact equivalent

to the hypothesis

4
=
:

] { ] ] ]
there exists a vector (y o,y I.k 4 J)

lI ] ]

L]
such that (y o,y )y J)GY; y OEDO;

| (y'i.xi)enr, $#€1; y'josnJ and hj(y'j)<0, j€s

3 --- and thaere exists g vector

(y"o,yﬂ.f.yﬂ) such that

R S

(Yw.yﬂ.yﬂ) E(riY); y"o € (i Do); g kI>0

and y""exi(uni), 1€1; y"’e(unj). jed.

Obviously, a vector (yo,yl,).,yJ) that satisfies the former hypothesis

satisfies both parts of the latter hypothesis. On the other hand,
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Theorem 6.1 on page 45 of [3] and Theorem 7.1 on page 51 of {3] imply that

L}
a convex combination a(y o,y I.k Y J) +ﬂ(yw,y+1.x+,y+J) of vectors

’ ’ ’ ] .
(y o,y I,l 4 J) and (y+o,y+1,k+,y+J) that satisfy the latter hypothesis

will satisfy the former hypothesis for sufficiently small B >0. q.e.d.

Although the condition h.1 (y'J) <0, j€J in hypothesis (i) of Theorem
2 resembles the well-known "Slater constraint qualification”, it is of
course to be deleted when J is empty -- which is the situation in most
applications. However, the analogous condition gi(x'i') <0, {€1I in
hypothesis (i) of the (unstated) dual of Theorem 2 (obtained from Theorem
2 by interchanging the symbols A and B, the symbols x and y, the symbols
K and A\, the symbols g and h, the symbols i and j, the symbols I and J,
the symbols ¢ and §, the symbols X and Y, the symbols C and D, the symbols
S and T, and the symbols S* and T*) is essentially the Slater constraint
qualification. In fact, we shall now see that the "ordinary programming"
cagse of the dual of Theorem 2 actually strengthens Slater's version of

the "Kuhn-Tucker theorem'.
The ordinary programming case occurs when

J=9,
A
n, =m and C, =C_ for sqme set C SE_ ke fo}ur,

and

B where there is a total of 1+0(I)

A
X =column space of

u identity matrices U that are mxm.
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In particular, an explicit elimination of the vector space condition

x€ X by the linear transformation

(3)-
LU

shows that the resulting problem A is equivalent to the very general

Q... aa

ordinary programming problem

Minimize go(z) subject to

gi(z)so i€l
z€ Co.

Now, the Slater constraint qualification for the preceding problem
simply requires the existence of a feasible solution z' such that
31(z')<0, 1 €I. Moreover, Slater's version of the Kuhn-Tucker theorem
asserts that the existence of such a "Slater solution" z' and the
existence of a finite infimum ¢ are sufficient to guarantee the
existence of a Kuhn-Tucker (Lagrange) multiplier vector A%,

To strengthen the preceding theorem with the aid of the dual of
Theorem 2, first note that the image x' = (z',2',...,z') of a Slater
solution z' under the given linear transformation satisfies hypothesis (i)
of the dual of Theorem 2. Then, note that the existence of a finite
infimm ¢ is simply hypothesis (ii) of the dual of Theorem 2. Now, the
convexity of Co implies the existence of a vector z+€ (ri co). by virtue

of Theorem 6.2 on page 45 of [3]. Moreover, its image x*- (:+.:+....,:+)

under the given linear transformation clearly satisfies hypothesis (iii)
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of the dual of Theorem 2 -- because (ri X) = X by virtue of fact @A), .nnd
because J=¢g. Consequently, the dual of Theorem 2 implies that both T
and T* are nonempty and that 0 =q+y. In view of Corollary 7A of (6], we
conclude from the nonemptyness of T* that a Kuhn-Tucker (Lagrange) vector
A* exists. Finally, note that we have also shown the existence of

another vector y*; so the Slater version of the Kuhn-Tucker theorem has

actually been strengthened.

More significant implications of Theorem 2 are given on page 47 of

[1].
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